主页 > I悠生活 >李飞飞又来改变世界了:让 AI 设计一个「图像辨识」AI,精

李飞飞又来改变世界了:让 AI 设计一个「图像辨识」AI,精

作者: 时间:2020-07-17 293° I悠生活

李飞飞又来改变世界了:让 AI 设计一个「图像辨识」AI,精

你可能听说过,在河南的农村里,在非洲的城市中,每一个你想像不到的地方,有着大量的数据标注员。

目前是标注员负责训练 AI ,但他们将失业

他们手动在图片里把每一个花瓶和每一辆汽车框出来,并且标上「花瓶」和「汽车」。一段时间后,这些人把成千上万张标记好的图片打包,发送给远在北京、上海甚至旧金山的 AI 公司。

GQ 将这些人称为《那些给人工智能打工的人》。

人工智慧发展迅速,大大小小的网路科技公司相继开展研究,投入商用。然而训练一个可用的 AI,需要大量準确标记好的图片、影片等资料。

正因为此,市场对数据标注的需求如此之大,吸引那些「给 AI 打工的人」争相加入,其中不乏原来找不到工作的闲散人员 — 毕竟这份工作只需要动动滑鼠,用不上太多知识。

但是,恐怕不久后,这些人就将再次失业。

AI 自动设计 AI ,投入图像语意分割的任务

上週,来自约翰.霍普金斯大学、史丹佛大学和 Google 的专家联合发布了一篇 论文 ,介绍了他们使用神经网络来自动搜索神经网络,将其投入图像分割方面的研究,并且取得的重要进展:

研究人员採用神经架构搜寻(Neural Architecture Search,NAS)技术设计了一个神经架构 A,放任它去自动搜寻/设计出新的神经架构 B,投入到图像语义分割(semantic image segmentation)的任务中。

研究人员发现,这个被自动搜寻出来的神经架构 B,在主流的小规模图像数据集上,未经训练就直接使用,表现已经超过了现有人类设计的、预先训练好的模型。

以往人们一直相信,设计 AI 需要大量知识和经验,简而言之就是需要人来设计。

但现在,AI 设计出的 AI,已经比人设计出的 AI 更强。

(论文: Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation )

研究人员将这个能够自动搜寻(设计)神经架构的技术命名为 Auto-DeepLab 。这个名字来自于 DeepLab,Google 人工开发的图像语义分割技术。前面加上 Auto,意思是在 DeepLab 的基础上,新的技术可以实现了很大程度的自动化。

论文署名作者当中,两人来自约翰.霍普金斯大学,其中第一作者是 Chenxi Liu,曾在 Google 实习;有四人来自 Google;剩下的一人来自史丹佛大学,正是原 Google Cloud 首席科学家,在电脑视觉学术和业界知名的李飞飞教授。

「本着 AutoML(编者注:Google 主导的 AI 计划,将演算法选择,模型的超参数调整,叠代建模和模型评估等工作自动化。)和人工智慧普及化的精神,对于不依赖专家经验知识,自动设计神经网络架构,人们的兴趣有了显着提升。」作者提到。

AI 自动设计 AI 的新突破:导入 NAS 技术、掌握外层设计

在「AI 自动设计 AI」这件事上, Auto-DeepLab 有几个比较重要的新尝试。

首先,神经架构搜寻 NAS 技术是 AI 领域的新兴物种,主要用于简单的图片分类。而在这篇论文里,研究者首次尝试将 NAS 投入到高密度的图片预测任务上(也就是对更複杂的高分辨率图片进行语义分割,比如 Cityscapes 城市街景数据集、PASCAL VOC 2012 和 ADE20K 等数据集)。

其次,在电脑视觉领域内的神经网络架构,通常分为内层、外层的两级架构,自动化的神经架构设计往往只能设计内层,外层仍需要人来设计和手调。而 Auto-DeepLab 是第一个让 AI 掌握外层设计和调参能力,并在图像语义分割任务上得到优异结果的尝试。

「图像语义分割」六个字听上去有点拗口,其实很好理解:对于一张图划分几个类别,然后将所有的像素点归类。

比如下面这张图,可以简单分为三类。图像语义分割的任务,就是判断每一个像素点属于人、自行车,还是背景。

李飞飞又来改变世界了:让 AI 设计一个「图像辨识」AI,精

需要明确的是,图像语义分割的任务纯粹是判断像素点属于哪个类别,它不能识别和区分独立的物体。

图像语意分割升级,有助于摄影辨识和自驾车发展

不过图像语义分割仍然有很重要的意义,比如在它可以用于手机拍照的「人像模式」。採用更优秀的图像语义分割技术,手机能够在更高精度的照片里确认每一个像素点,属于人,亦或是背景。

目前 Google、小米等公司都在手机拍照上使用这一技术。理论上,未来的「人像模式」可以在毛髮、衣物边缘实现更好的效果。

以及在自动驾驶的场景里,神经网络需要判断挡在前面的是车、行人还是建筑物,进而採用不同策略进行躲避,这同样需要图像语义分割来打基础。

从该论文体现的效果来看,Auto-DeepLab 还可以被转移到其他任务上。言外之意,让 AI 自动设计 AI 这件事,可能还会有很大的想像空间。

比如作者在论文最后提到,在目前的研究框架内,他们可以继续在物体识别的方向进行研究。

如果能够取得类似的结果并大规模使用,或许有一天,在数据标注(特别是图像标注)这件事上,人类标注员的成本等优势可能也会消失。

如果人工智慧可以给人工智慧打工,打工效率比人还高,「那些给人工智慧打工的人」会失去工作吗?

更多 AI 新发展

负责训练 AI 的作业员,薪水只有 9 到 18K 是怎幺回事?
Google 训练 AI 转换街景图像,AI 在地图藏人类看不到的「小抄」骗过工程师
荣总将推出全台首家「AI 门诊」!600 倍高速诊断,準确率高达 80%

上一篇:
下一篇:

申博太阳城_久赢app|提供生活娱乐|秉承的国际视野|网站地图 申博私网放线 申博7737